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Abstract. Tracers/markers/particles are commonly used in geodynamical models to track composition and sometimes 

temperature throughout the domain. A common problem is that over time, gaps in the tracer distribution can develop, often 

resulting in cells with no tracers as well as bunching of tracers. Here a correction method that perturbs or “nudges” the 

positions of tracers in such a way as to close gaps and eliminate bunching is presented. Test results show that this tracer 

nudging method is highly effective. Starting from an extremely heterogeneous tracer distribution with large regions of the 10 

domain devoid of tracers, it can produce an even distribution in only a few nudge iterations. In a time-stepping situation with 

a nudge every time-step, the amplitudes of the nudges are small yet sufficient to prevent gaps and bunches, allowing a low-

order tracer advection method to be used while maintaining a tracer distribution that is more even than that obtained using 

higher-order advection methods alone. The nudge essentially corrects any non-conservation error inherent in an advection 

method. The computational cost is small because the method simply requires solving a Poisson equation. 15 

1 Introduction 

Tracers, alternatively named markers or particles, are commonly used in geodynamical models to track composition and 

sometimes temperature, typically in the framework of a so-called “marker-and-cell” or “particle-in-cell” method, in which 

velocity and pressure are calculated on a fixed Eulerian grid while various other quantities are advected on Lagrangian 

tracers/markers/particles (e.g. (Harlow and Welch, 1965; Tackley and King, 2003; Gerya and Yuen, 2007)). All of the major 20 

geodynamical modelling codes include this option, including CitcomS (Moresi et al., 2014), Aspect (Heister et al., 2017), 

Stag3D/StagYY (Tackley and King, 2003; Tackley, 2008), TERRA (e.g. Panton et al., 2025), LaMEM (Kaus et al., 2016), 

and I3ELVIS (Gerya et al., 2015).  

This method relies on many tracers (e.g. 5-50) being present in each cell. Thus, it is problematic that over time, gaps 

in the tracer distribution typically develop, often resulting in cells containing no tracers. At the same time, bunching of 25 

tracers builds up. Such gaps and bunches may develop due to inaccuracies in tracer advection methods or modelling complex 

processes such as eruption or intrusion of molten tracers with associated compaction of the melt source region (e.g. Lourenco 

et al., 2020). The development of such gaps and bunches can be minimized by an optimal choice of tracer advection method 

(Pusok et al., 2016; Gerya et al., 2021) but apparently not eliminated, particularly since geodynamical simulations spanning 
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the age of the Earth may require millions of time steps, giving small inaccuracies plenty of time to build up. Thus, some 30 

remedy is required. One remedy is to create new tracers to fill the gaps (Gerya, 2019).  

Another remedy, presented here, is to perturb or “nudge” the positions of tracers in such a way as to close gaps and 

eliminate bunching. If performed frequently such as every time step, the amplitudes of the nudges are small yet sufficient to 

prevent large-scale gaps and bunches from building up. In this usage, the method corrects any non-conservation (in the sense 

of not being divergence-free everywhere) inherent in the method used to advect tracers. The method also works well when 35 

starting from an extremely uneven tracer distribution with large fractions of the domain initially devoid of tracers. 

 Irregularities in the spatial distribution of tracers can be quantified in terms of the number of tracers per unit area, 

typically calculated on a cell-by-cell basis. If tracers are considered to each have a mass (equal to the total mass of the 

domain divided by the number of tracers), then this can alternatively be thought of as a density, i.e. mass of tracers per unit 

area. Thus, the goal of this method is to nudge tracer positions in order to achieve a constant tracer density throughout the 40 

model domain. 

In subsequent sections the mathematical theory is presented, followed by various tests of its effectiveness using the 

accompanying MATLAB program in two and three dimensions. This method has already been implemented and is in regular 

use in the geodynamical modelling code StagYY (Tackley, 2008). 

2 Mathematical Theory 45 

As the goal is to achieve a constant tracer density, the first step is to calculate the current tracer density 𝜌t(x,y,z),	 defined	 as	

the	mass	(or	number)	of	tracers	per	unit	volume	and	calculated	on	a	cell-by-cell	basis.	It	is	important	that	𝜌t	changes	

smoothly	as	tracers	move	around,	which	it	does	not	if	one	simply	counts	the	number	of	tracers	in	each	cell,	because	a	

tracer	crossing	a	cell	boundary	causes	an	abrupt	change	in	the	densities	of	the	two	cells.	Therefore,	linear	averaging	

of	 tracers	 to	 cells	 is	 important	 –	 termed	 “shape	 function”	 averaging	 by	 Tackley	 and	 King	 (2003)	 and	 widely	50 

recommended	(e.g.	Gerya,	2019;	Ismail-Zadeh	and	Tackley,	2013).	In	this,	each	tracer	contributes	to	the	mass	in	4	(in	

2-D)	or	8	(in	3-D)	cells,	linearly	dependent	on	its	distance	from	the	cell	centres	using	bilinear	(in	2-D)	or	trilinear	(in	

3-D)	functions	analogous	to	the	shape	functions	used	in	the	finite	element	method.	Once	the	tracer-based	density	in	

each	cell	is	known,	the	tracer	density error can	then	be	calculated	as	

∆𝜌! = 𝜌" − 𝜌#		,																																																																																																																																																																																						(1)	55 

where 𝜌# is the correct density (e.g. of rock). This can in general vary with position, but for the purposes of the tests in this 

paper is assumed to be constant. 

 The required perturbation (“nudging”) of tracer positions can be derived starting with the equation expressing 

conservation of mass: 
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$%
$"
= −∇ ∙ (𝜌𝑣⃗)	,																																																	 	 																																																																																																																							(2)	60 

where 𝜌 is the density field, 𝑣⃗  is the velocity field and t is time. Multiplying (2) by a finite time interval leads to an 

approximate equation relating a finite change in density to a finite perturbation in position ∆𝑥⃗, which is here applied to the 

tracer density 𝜌": 

∆𝜌" ≈ −∇ ∙ (𝜌"∆𝑥⃗)	.																																																																							 																																																																																																							(3)	

∆𝑥⃗ can conveniently be expressed as the gradient of a displacement potential 𝜙:	65 

∆𝑥⃗ = ∇'
%!
			.																																																																										 	 																																																																																																							(4)	

Substituting (4) into (3) leads to a Poisson equation for 𝜙: 

∆𝜌" = −∇(𝜙		.																																																																																																																																																																																															(5)	

The desired change in density ∆𝜌" is minus the density error, ∆𝜌!, therefore the equation to solve is  

∇(𝜙 =	∆𝜌!		.																																																																																																																																																																																																		(6)	70 

This can easily and efficiently be solved using standard methods such as multigrid. Assuming that the domain boundaries are 

impermeable, the appropriate boundary condition for 𝜙 is zero gradient perpendicular to the boundary. 

It is noted that another possible expression for ∆𝑥⃗ is 

∆𝑥⃗ = ∇𝜙																																																																																																																																																																																																								(7)	

leading to 75 

∆𝜌" = ∇ ∙ (𝜌"∇𝜙)		,																																																																																																																																																																																						(8)	

which is slightly more difficult to solve and problematic in areas where 𝜌" = 0, if such areas exist. Equation (4) also seems 

problematic in areas where  𝜌" = 0 but as there are no tracers in these areas, there is no problem in practice. 

 This method does not achieve a perfectly uniform tracer distribution in a single nudge because 𝜌" changes (towards 

the correct density  𝜌# ) during the displacement of tracers: equation (2) is an approximation. In areas of too-high 𝜌" 80 

(decreasing during the correction step), equation (4) underpredicts the displacement, whereas in areas of too-low 𝜌" 

(increasing during the correction step), equation (4) overpredicts the displacement. Thus, when calculating the displacement 

from equation (4) it is best to use an average of the initial density and the correct density, rather than only the initial density. 

Tests indicate that a geometric average gives slightly better convergence than an arithmetic average, but both perform 

considerably better than using just the starting 𝜌". In summary, when calculating displacement, equation (4) is replaced by:  85 

∆𝑥⃗ = ∇'
√(%!%")

			.																																																															 	 																																																																																																		(9)	
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A	single	application	of	this	algorithm	achieves	a	considerable	reduction	of	the	density	error	(quantified	using	the	L1	

or	L2	norm),	which	is	sufficient	during	a	time-stepping	situation.	If,	however,	starting	from	an	extremely	non-uniform	

tracer	distribution	with	large	portions	of	the	domain	being	devoid	of	tracers,	several	iterations	of	the	algorithm	may	

be	needed,	as	documented	in	Section	4.	90 

3 Accompanying MATLAB scripts 

This method is implemented in two and three dimensions in the accompanying MATLAB scripts (Tackley and ETH Zurich, 

2025) (main program NUDGE.m), which can run the various test cases documented and discussed in Section 4. MATLAB 

scripts have the advantage of being easy to translate into other science and engineering-oriented high-level languages that 

include multi-dimensional arrays and array algebra, such as Julia (Bezanson, 2017) or modern Fortran (Metcalf et al., 2024). 95 

Indeed, the method has already been implemented in the Fortran geodynamical modelling code StagYY (Tackley, 2008) and 

is in regular use.  

The accompanying program uses a multigrid solver to obtain the displacement potential field. This is highly 

efficient but does require that the number of cells be a power-of-2 in each direction, or a power-of-2 times a small integer. 

Resolution is set by the number of cells in each direction nx, ny and nz, and the number of tracers by tracers_per_cell. Two-100 

dimensional cases can be run by setting the number of y-points ny=1. Densities are calculated at cell centres, while 

displacements and velocities are defined at cell boundaries in the standard staggered-grid finite volume arrangement (e.g. 

Harlow and Welch 1965; Patankar, 1980) as used by many codes in the geodynamical modelling community (e.g. Ogawa et 

al., 1991; Tackley, 1993; Trompert and Hansen, 1996; Gerya and Yuen, 2007; Kameyama et al. 2008; Tackley, 2008; Kaus 

et al., 2016). Domain boundaries are coincident with the perpendicular displacement/velocity points. Tracer positions are 105 

initialised either on a regular grid (with a smaller grid spacing than that on which the velocities/displacements are 

calculated), on a regular grid with random perturbations of up to half a grid spacing, or completely randomly. Initialising 

tracers on a regular grid causes artefacts with tracer alignment when they are advected, so regular + random is optimal. 

Completely random positions cause a density error that is typically a factor of 2 larger than regular + random, as shown later. 

The domain depth is assumed to be 1.0 and the grid spacing is the same in all three physical directions, meaning that the 110 

domain width in the x and y directions is given by (nx/nz) and (ny/nz), respectively. 

The MATLAB m-files are:  

• NUDGE.m: The main program that runs and plots individual tests or test suites. 
• correct_tracer_density.m: Performs the "nudging" algorithm detailed in Section 2. 
• tracer_density.m: Calculates the cell-based tracer density field.  115 
• Poisson_solve.m: Solves Poisson equation in 2-D or 3-D assuming zero-gradient boundary conditions. 
• advect_tracers.m: Performs 1st-order Euler, 2nd-order or 4th-order Runge-Kutta tracer advection. 

 

The core of the nudging algorithm in correct_tracer_density.m is compact, consisting of only four lines (Fig. 1). 
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 120 
Figure 1. MATLAB implementation of the algorithm in Section 2, in file correct_tracer_density.m 

4 Tests 

The first set of tests starts with various extremely non-uniform tracer distributions and tests how rapidly (in terms of number 

of nudging iterations) the method can create a uniform tracer distribution. Then follows a time-stepping test, using a simple 

analytically defined flow field and low order advection method. 125 

4.1 Highly non-uniform tracer distribution tests 

Various idealized initial tracer distributions are tested: 

(i) Half-empty. Half of the domain is empty of tracers. 
(ii) Rectangular hole. A rectangular region in the middle of the domain is empty of tracers.  
(iii) Spherical hole. A spherical region in the centre of the domain is empty of tracers.  130 
(iv) Sphere. All tracers are in a sphere in the centre of the domain, the rest being empty. 
(v) Random. Tracers are placed randomly in the entire domain. 

 

Figure 2 (top row) shows these initial conditions and Fig. 2 (rows 2-5) shows the results of the first four correction nudges. 

After two nudges (a "nudge-nudge"; Fig. 2 middle row) tracers fill the domain; the subsequent nudge-nudge evens them out 135 

further. The evenness of the tracer distribution is quantified by tracer density plots in Fig. 3. After one nudge-nudge there is 

still significant unevenness, but this becomes difficult to discern after a further nudge-nudge. Random initial tracer positions 

(right column) lead to substantial initial unevenness in tracer density.  

 Figure 4 shows how the L1 norm of tracer density error decreases with number of nudges for the 2-D tests (Figs. 2 

and 3) and for 3-D versions of the tests. For highly non-uniform initial conditions the reduction in tracer density error is 140 

more than an order of magnitude after 2 nudges, then becomes less rapid. Again, the random initial condition has substantial 

tracer density error approaching 0.2. 3-D cases are similar but with slightly slower convergence for the "sphere" case. 

 A problem in initial tests of the “sphere” case was that many tracers were nudged through the domain boundaries. 

This is due to the extreme nature of this test and is not a problem in a normal time-stepping application, but nevertheless a 

solution has been found. An approach that does not work is to place these tracers at the closest point inside the domain, 145 

although this does work for normal tracer advection by a velocity field that does not cross the boundaries. However, in this 

application the displacement field can substantially cross the boundaries, leading to a build-up of tracers at the boundaries, 

tracers that are not easily nudged away from there (close to the boundaries the perpendicular displacement is 0). What does 

work is to detect tracers that are nudged beyond external boundaries and instead apply only a fraction of the displacement to 

them. A fraction of 70% was found to be optimal. 150 
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Figure 2. Tracer positions in the five highly nonuniform tests performed in 2-D with 32x32 cells and 10 tracers per cell on average. 
Each column is one test case. Shown are (top row) the initial condition and (rows 2 - 5) nudges 1-4.   
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Figure 3. Tracer density error fields for the tracer distributions shown in Figure 2. The colour scale is the same for all frames. 155 
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Figure 4. L1 norm of tracer density error versus number of nudges for the 5 initial tracer distributions in (left) 2-D 32x32 cells and 
(right) 3-D 32x32x32 cells, in both cases with 10 tracers per cell on average. 

4.2 Time-stepping test 160 

The goal in this test is to determine whether the tracer nudging method can prevent gaps and bunches from building up in a 

time-stepping situation, as this is what is typically used in geodynamical simulations. Tracers are advected according to an 

analytically defined velocity field given by the curl of a two-dimensional stream function S(x,z): 

𝑣, =
-.
-/
						𝑣0 = 0							𝑣/ = − -.

-,
					.										 	 	 	 	 	 	 	 	 		(10)	

The resulting flow field is divergence-free for any S. In the presented tests, S is defined by  165 

𝑆(𝑥, 𝑧) = 1
2
𝑠𝑖𝑛 i𝜋 ,

3#
k 𝑠𝑖𝑛 i𝜋 /

3$
k											 	 	 	 	 	 	 																		 		(11)	

where Lx is the length of the domain in the x-direction and Lz is the length of the domain in the z-direction. This gives a one-

cell circulation pattern with no flow through the boundaries and velocities given by: 

𝑣, = 𝑠𝑖𝑛 i𝜋 ,
3#
k 𝑐𝑜𝑠 i𝜋 /

3$
k												𝑣/ = − 1

3#
𝑐𝑜𝑠 i𝜋 ,

3#
k 𝑠𝑖𝑛 i𝜋 /

3$
k			 	 	 	 	 	 (12)	

In order to maximize the challenge of maintaining a uniform tracer distribution, tracers are advected using the first order 170 

forward Euler method, which usually makes them spiral outwards and concentrate towards the outside of the domain. 

Additionally, they are initialized in completely random positions. This combination (Euler+nudge+random) is compared to 

three advection methods without any nudging: Euler, 2nd-oder Runge-Kutta and 4th-order Runge-Kutta methods with tracers 
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initialized on a (regular+random) grid. Velocities at the staggered grid points are calculated using the expressions above and 

linearly interpolated to tracer positions. 175 

 Figure 5 shows tracer distributions and density error fields after 100 time-steps of nondimensional time 0.05 on a 

32x32 grid with an average of 10 tracers per cell. As the maximum velocity given by equation (12) is 1, tracers move a 

maximum distance of 0.05 in one step. As expected, the Euler method (2nd column) is quite inaccurate, with tracers 

spiraling outwards and building up towards the domain boundaries and corners. With the addition of a single nudge per step 

(left column), however, the tracer distribution remains even and negligible tracer density error is visible. The 2nd- and 4th-180 

order Runge-Kutta methods produce similar results to each other, with significant unevenness visible in the tracer density 

error field.  

 
Figure 5. Tracer distributions (top row) and associated density error fields (bottom row) for the 4 advection methods on a 32x32 
grid with an average of 10 tracers per cell. 185 

 The time-evolution of tracer density error is quantified in Fig. 6, which shows the L1-norm versus time step. At the 

initial condition (step 0) there is more than a factor of 2 higher density error in the "Euler + nudge" case than the other cases 

because tracer positions are completely random, whereas in the other cases tracers are initialized on a regular grid with 

random perturbations. This indicates that the latter initial condition is much better. Subsequently, the "Euler" case rapidly 

develops a large density error, whereas adding a single nudge per step causes a reduction of density error to a low value, 190 

which is subsequently maintained. In both Runge-Kutta cases the error increases steadily from the initial condition, 

surprisingly at a similar rate for the 2nd- and 4th-order schemes.  
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Figure 6. L1-norm of tracer density error versus time step for the tests in Figure 5. 

5. Conclusions 195 

The tracer nudging method is an effective way of eliminating and preventing gaps and bunching of tracers in geodynamical 

models/simulations. Starting from an extremely heterogeneous distribution with large regions of the domain devoid of 

tracers, it can produce an even distribution in only a few nudge iterations. In a time-stepping situation it allows a low-order 

tracer advection method to be used while maintaining a tracer distribution that is more even than that obtained using high-

order advection methods alone. Essentially, the nudge corrects any non-conservation error inherent in an advection method. 200 

The computational cost is small because it simply involves solving a Poisson equation, which is much faster than the Stokes 

solve that has to be performed every time step (multiple times for non-linear rheology).  

Code availability. The exact version of the MATLAB code used to produce the results and figures used in this paper is 
archived on Zenodo under the MIT license under DOI 10.5281/zenodo.15065274 (Tackley and ETH Zurich, 2025). No input 
data or additional scripts are required. 205 
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